
MITIGATING THE IMPACT OF SPEECH RECOGNITION ERRORS ON CHATBOT USING
SEQUENCE-TO-SEQUENCE MODEL

Pin-Jung Chen∗, I-Hung Hsu∗, Yi-Yao Huang∗, Hung-Yi Lee

Department of Electrical Engineering, National Taiwan University
{b02504086, b02901053, b02901042, hungyilee}@ntu.edu.tw

ABSTRACT

We apply sequence-to-sequence model to mitigate the im-
pact of speech recognition errors on open domain end-to-end
dialog generation. We cast the task as a domain adaptation
problem where ASR transcriptions and original texts are in
two different domains. In this paper, our proposed model
includes two individual encoders for each domain data and
make their hidden states similar to ensure the decoder pre-
dict the same dialog text. The method demonstrates that the
sequence-to-sequence model can learn the ASR transcriptions
and original text pair having the same meaning and eliminate
the speech recognition errors. Experimental results on Cor-
nell movie dialog dataset demonstrate that the domain adap-
tion system help the spoken dialog system generate more sim-
ilar responses with the original text answers.

Index Terms— spoken dialog system, neural dialog gen-
eration, ASR error modeling, encoder decoder architecture,
domain adaptation

1. INTRODUCTION

Chatbot, also called Conversational Agent or Dialog Sys-
tem, is the new big thing in social media and is quickly chang-
ing the way we interact with services. Currently there are two
types of approaches to deal with this task. In retrieval-based
models, one may use some kind of heuristic to select an appro-
priate response from a predefined repository given the input
context. The heuristic can simply be a rule-based algorithm,
or can be as complex as deep neural networks[1]. By contrast,
in generative models, the response is generated word by word
from scratch. The LSTM sequence-to-sequence model is one
type of generative models, which maximizes the probability
of generating a response given the previous dialog turn. This
approach can be trained end-to-end and achieves state-of-the-
art results on neural response generation tasks.

Despite the success of sequence-to-sequence models in
dialog generation, there is no sequence-to-sequence model
focusing on dealing with ASR errors in end-to-end spoken
dialog systems. The main problem is that a spoken dialog

*These authors contributed equally.

system requires an automatic speech recognition (ASR) sys-
tem to perform speech to text conversion, but the transcription
inevitably includes ASR errors. For spoken dialog systems,
[2] [3] used word confusion networks to estimate word confi-
dence scores on ASR texts. However, there is no related work
on sequence-to-sequence model to solve this problem. There
are some other works in different research fields trying to ad-
dress the ASR error issues. [4] used deep neural networks
to model the error probability on spoken text summarization
and [5] applied the conditional random field (CRF) model on
ASR error detection. These methods can only detect ASR er-
rors and try to recover from them, but they do not make use
of the semantic information.

In this paper, we investigate the effects of ASR errors
for sequence-to-sequence models on spoken dialog systems.
More specifically, we cast the task as a domain adaptation
problem where ASR transcriptions and original texts are from
two different domains. The goal of this task is to ensure that
the dialog system can generate the same response given in-
puts from the two domains. Thus, we propose a dual-encoder
sequence-to-sequence model, which manages to force the
state vectors (i.e. the last hidden state of the encoder) of the
original texts and ASR transcriptions resemble each other so
that the decoder can generate similar responses. In addition,
we create a new ASR transcription dataset based on Cornell
Movie-Dialogs Corpus. Empirically, experiment results on
this dataset illustrate the outstanding performance by using
our dual-encoder sequence-to-sequence model. For the real-
world scenario lacking ASR conversion data, we conduct
experiments using different percentages of ASR transcription
data to demonstrate that our model can still achieve decent re-
sults. We show that the domain adaptation approach can help
the dialog system to apprehend the same semantic meaning
between ASR transcriptions and original texts.

Our contributions are three-fold:

• We are the first to formulate the ASR error issue on
spoken dialog systems as a domain adaptation problem;
• We show that our dual-encoder sequence-to-sequence

model outperforms the original sequence-to-sequence
model by a large margin;
• Our dual-encoder sequence-to-sequence model can



learn the same semantic meaning of the inputs from
two different domains and can be easily applied to
other ASR related research topics.

2. RELATED WORK

Speech media analytics and applications have been
achieved successfully with the basic approach of cascading
ASR modules with text processing systems. This framework
works well when the ASR accuracy is relatively high, but
less sound when more challenging real-world scenarios are
considered. Thus, ASR error management to ameliorate the
end-to-end performance in such integrated system gets more
and more attentions. In this section, we will introduce several
methods that manage to deal with this problem in different
applications. Then, we will discuss some related works on
dialog systems and domain adaptation.

2.1. Approaches in related applications

Different approaches are explored to address such prob-
lem in distinct applications.[6] harnessed speech translation
task by jointly learning ASR and machine translation to opti-
mize bilingual evaluation understudy scores [7] directly. This
method alleviates the issue that the best ASR parameters on
minimizing the traditional word error rate will only lead to
sub-optimal performance. The same idea works for spoken
content retrieval tasks. By modifying ASR training systems
[8], the performance of retrieval-based models will be im-
proved. However, all of these methods required modifying
ASR modules. In this paper, we focus on mitigating the ASR
errors based on a given ASR system. Without modifying ASR
modules, interactive error recovery is applied to deal with er-
rors in speech-to-speech translation system. [5] employed
conditional random field (CRF) models to detect ASR errors
and attempted to resolve them by eliciting user feedback. In
abstractive headline generation task for spoken content, [4]
proposed a method about considering ASR errors as a prob-
ability distribution. The work applied an attentive RNN to
incorporate ASR error parameters into the attention mecha-
nism.

2.2. Methods for dialog systems

For dialog systems, numerous works managing to address
ASR failures relied on spoken language understanding mod-
ules. Word Confusion Networks(WCNs) provided a tighter
integration of ASR and language understanding, which took
word confidence scores into consideration rather than simply
using ASR one-best hypotheses [2] [3]. The application of
WCNs improved the ASR error tolerance in spoken language
understanding (SLU). [9] demonstrated that jointly training
for predicting the optimal word as well as the slot sequence
would achieve significant improvement in both recognition

and semantic tagging accuracy simultaneously. Furthermore,
neural approaches based on word embedding techniques were
utilized to measure ASR confidence and used as additional
SLU features to augment the system performance [10]. While
abounding works focusing on spoken language understand-
ing has hastened ASR failure management in modular dialog
systems, ASR error handling in end-to-end chatbots is rarely
seen. Hence, in this paper, we are trying to solve this problem
under such scenario.

2.3. Domain Adaptation

There has been extensive prior works on domain transfer
learning. Among them, most works focused on transferring
deep neural network representations from a labeled source
dataset to a target domain dataset. For example, [11] pro-
posed an adversarial domain adaptation method which tried
to minimize the distance between the source and the target
domain feature mappings. The main concept of these works
is to guide feature learning by minimizing the difference be-
tween the source and target feature distributions [12][13][14].
Common methods were using Maximum Mean Discrepancy
(MMD) [15] as loss to accomplish this purpose. MMD com-
putes the norm of the difference between two domain means.
Choosing an adversarial loss to minimize the domain shift is
another common approach. One example is to add a domain
classifier which predicts the binary domain label of the in-
puts, then follow by a domain confusion loss that encourages
the classifier to predict as closely as possible to a uniform dis-
tribution over binary labels [16]. Both methods provide mea-
sures to estimate the difference between two feature domain
distributions and can be referenced as future works.

3. DOMAIN ADAPTATION ON ASR ERRORS

We consider the ASR error issue as a domain adaptation
problem. For the spoken dialog systems, users can choose to
use text or speech as the dialog input. If users choose speech
as the input, there will contain some background voice noise
and speech recognition uncertainty on the input data. Accord-
ingly, we can consider that the texts and ASR transcriptions
have the same latent feature but are observed from different
interfaces. Ideally, users will get the same response no matter
whether the input is given by text or speech. For example, if
the text is “Hey, nice to see you again.” and its ASR conver-
sion is “hey thanks to see you again”, the dialog system has
to generate the same answer, for instance: “What’s up?”. In
this scenario, we can use domain adaptation methods to solve
the problem.

In unsupervised adaptation, source texts Xs and responses
Ys are drawn from a source distribution ps(x, y), while tar-
get transcriptions Xt are drawn from a target distribution
pt(x, y), where there are no response observations.



Our goal is to learn a target representation, Mt and a de-
coder Dt that can correctly predict the answer at test time.
Because of the ASR errors, direct supervised learning on the
target domain do not work well. Domain adaptation meth-
ods instead learn a source representation mapping, Ms, along
with a source decoder Ds, and then adapt that model to the
target domain.

The main objective is to regularize the learning of the
source and target mappings, Ms and Mt, in order to minimize
the distance between the source and target mapping distribu-
tions: Ms(Xs) and Mt(Xt). If the distance is close enough,
then the source decoder, Ds, can be directly applied to the
target representations, Mt(Xt), eliminating the need to learn
a separate target decoder Dt.

To implement this concept, we propose the dual-encoder
sequence-to-sequence model. In Section 4, we describe the
ideas of our model and the approach used to minimize the
distance between source and target mapping distributions. In
Section 5, we introduce the ASR transcription dataset synthe-
sized by ourselves based on Cornell Movie-Dialogs Corpus.
In Section 6, we conduct three different experiments to prove
that our problem formulation is appropriate, and to compare
a common domain adaptation method with our dual-encoder
sequence-to-sequence model.

4. DUAL-ENCODER SEQUENCE-TO-SEQUENCE
MODEL

Given an ASR transcription ta or an original text t, our
model will return a response to predicted by the decoder. The
dialog generation task is to ensure that the model can output
similar to from the ta and t pair. We start from sequence-to-
sequence model which consists of two recurrent neural net-
works (RNNs): an encoder that encodes the input and a de-
coder that generates the output. For our proposed model, it
includes one decoder, one ASR gate and two encoders: one
for ASR transcriptions and the other for original texts. Our
dual-encoder sequence-to-sequence model is diagrammed in
Figure 1.

4.1. Encoder

There are two encoders with the same structure but dif-
ferent parameters: one for ASR transcriptions, the other for
original texts. The encoder is a RNN that reads each symbol
of an input sequence x = (x1, x2, x3, . . .) sequentially. The
input sequence can be an ASR transcription or an original
text. As it reads each symbol, the hidden state ht is updated
by previous hidden state ht−1 and xt according to Eq. (1).

ht = f(ht−1, xt) (1)

After reading to the end of the sequence, the hidden state of
the RNN is a summary c of the whole input sequence. Both

the summary ca from the ASR encoder and the summary co
from the original encoder will be passed to the ASR gate.

4.2. ASR Gate

Since the ASR transcription and the original text are ob-
served from different domains but have the same semantic
meaning, we expect the summary co and ca to be the same.
According to this assumption, we utilize the objective func-
tion Eq. (2) to minimize the distance between the two vectors
in the training stage. In the testing stage, an ASR transcrip-
tion will be encoded into summary ca and the ASR gate will
forward it to the decoder.

Lc = ‖co − ca‖2 (2)

4.3. Decoder

The decoder of the proposed model is another RNN. It
is trained to generate the output sequence by predicting the
next symbol yt given the hidden state ht. Both yt and ht are
also conditioned on yt−1 and the summary c selected by the
ASR gate. Hence, the hidden state of the decoder at time t is
formulated as the following equation:

ht = f(ht−1, yt−1, c) (3)

There are two phases in the training stage. In the first phase,
original texts are provided and the ASR gate will pass sum-
mary co to the decoder. The original encoder and the decoder
are jointly trained to minimize the loss function Eq. (4).

Ls = −
1

N

N∑
n=1

log pθ(yn|xn) (4)

In the second phase, both original texts and ASR transcrip-
tions are provided. We will fix parameters of the original
encoder and forward summary ca to the decoder. The over-
all loss function L of our dual-encoder sequence-to-sequence
model in phase 2 is:

L = Lc + Ls (5)

5. DATASET

We use Cornell Movie-Dialogs Corpus [17] as our train-
ing and testing dataset. This corpus contains a large meta-data
collection of fictional conversations extracted from raw movie
scripts. It has 220,579 exchanges between 10,292 pairs of
movie characters, with total 304,713 utterances. As turn tak-
ing is clearly indicated in this corpus, we can easily collect
pairs of sentences as the data for our chatbot.

We perform only some basic pre-processing on this cor-
pus. First, we normalize all digits to ‘0’ and lowercase ev-
ery letter. Second, we remove the noisy tags such as <u>



Fig. 1. The architecture of our dual-encoder sequence-to-sequence model for training the ASR transcription dialog system.

BLEU Score range # of data
0 ∼ 0.4 25776
0.4 ∼ 0.7 21568
0.7 ∼ 1.0 17387

Table 1. The ASR error distribution on our training dataset
(higher BLEU scores indicate less ASR errors).

and </u> which are meaningless. Finally, since we adopt
the bucketing method, we only retain those data which the
original input sentences and their corresponding ASR tran-
scriptions can be fit into the same bucket. After these pre-
processing steps, we obtain 64731 turns as training data and
17853 turns as testing data.

Since currently there is no available corpus for spoken
dialog systems, we do the following procedure to generate
our ASR data. First, we use Google text-to-speech system to
transform the Cornell Movie-Dialogs Corpus into audio files.
Then, we utilize CMU Sphinx to generate the ASR transcrip-
tions. We compare the ASR transcriptions to source texts
using BLEU scores to analyze the extent to which the ASR
errors affect our corpus as Table 1.

To be more specific, our dataset contains six parts:

• Original texts for training data input (train.enc)
• Original texts for training data output (train.dec)
• ASR transcriptions for training data input (train asr.enc)
• Original texts for testing data input (test.enc)
• Original texts for testing data output (test.dec)
• ASR transcriptions for testing data input (test asr.enc)

There is no ASR transcription for training and testing data
outputs because the training and testing data outputs of ASR

transcriptions are the same as train.dec and test.dec respec-
tively. For the expression to be clear, we will use the boldface
notation (train.enc, train.dec, etc. . . ) in Section 6.

6. EXPERIMENTS

6.1. Implementation

Our algorithm is implemented in Tensorflow. We conduct
three different experiments to show the ASR dialog problem
and to prove that our model can address this issue. The origi-
nal encoder, ASR encoder and decoder of our Seq2seq model
are GRU cells with two layers of 512 dimensions. The buck-
ets are [(10, 10), (20, 20)]. Adam optimizer is chosen [18] to
optimize our network with details presented in Table 2. Gra-
dients are clipped to avoid gradient explosion with a threshold
of 5. The vocabulary size is limited to 35000, and the word
embedding size is 64 with random initialization. During the
training process, we feed the ground truth to the next time
step of the decoder. The training details are summarized in
Table 2.

Besides, we’ve tried the scheduled sampling [19] mech-
anism, but it does not have any positive effect on decoding
more readable sentences even if it can reduce the gap between
training and testing perplexity. Thus, we refrain from using
scheduled sampling in our final model.

6.2. End-to-end training based on ASR transcriptions

This experiment aims to demonstrate that the model di-
rectly trained on ASR transcriptions will generate diverse di-
alogs compared to the model trained on original texts. There
are two sequence-to-sequence models being trained:



GRU layer dimensions 512
Batch size B 64

Initial learning rate λ 0.002
β1 0.9
β2 0.999

epsilon 1e-8
vocabulary size 35000

word embedding size 64

Table 2. Parameter settings

Model Training data BLEU Score
Seq2Seq-text original text 0.1255
Seq2Seq-ASR ASR transcription 0.1812

Table 3. Compared to test.pred, the result on test asr.enc
using the end-to-end training method.

• Seq2Seq-text: sequence-to-sequence model trained on
original text.

• Seq2Seq-ASR: sequence-to-sequence model trained
on ASR transcriptions.

We denote test.pred as the responses predicted by model
Seq2Seq-text given test.enc. The two models, Seq2Seq-text
and Seq2Seq-ASR, are then tested by inputting data with
ASR errors (test asr.enc). We examine whether the two mod-
els can generate responses similar to test.pred, and the results
are shown in Table 3.

According to the results, end-to-end training on ASR tran-
scriptions can get better performance than the Seq2Seq-text
which is only trained on original texts. However, both of the
results are lower than 0.2. It indicates that these approaches
can not guarantee dialog systems to reply a similar response
when giving an ASR transcription input. Our explanation is
that the model trained on ASR transcriptions can make out
some ASR patterns and thus outperforms Seq2Seq-text. Nev-
ertheless, the ASR patterns are quite inconsistent, causing the
model to be incapable of learning them well.

6.3. Fine-tune on original text encoder

To solve the ASR error problem, we experiment with
a common domain algorithm: fine-tuning Seq2Seq-text on
ASR transcriptions. In this method, the model can learn the
semantic meanings of original texts first and then adapt itself
to data from the ASR domain. For the real world scenario, the
original text data are much more than the ASR transcription
data. Therefore, we fine-tune our model on different percent-
ages of train asr.enc to examine its performance when fewer
data are available. The result is in Table 4.

Our result shows that the performance becomes signifi-
cantly better when training on more ASR data. Also, on the
40% train asr.enc experiment, the performance already out-
performs the Seq2Seq-ASR result. It can prove our assump-

Model Fine-tuning data BLEU Score
Seq2Seq-text 0% train asr.enc 0.1255

20% train asr.enc 0.1763
40% train asr.enc 0.1916
60% train asr.enc 0.2004
80% train asr.enc 0.2037

100% train asr.enc 0.2016

Table 4. Compared to test.pred, the result on test asr.enc
using different percentages of ASR data to fine-tune.

Loss functions Training data BLEU Score
Lc 20% train asr.enc 0.2560

40% train asr.enc 0.2567
60% train asr.enc 0.2639
80% train asr.enc 0.2649
100% train asr.enc 0.2692

Lc + Ls 20% train asr.enc 0.2554
40% train asr.enc 0.2643
60% train asr.enc 0.2663
80% train asr.enc 0.2683
100% train asr.enc 0.2752

Table 5. Compared to test.pred, the results of our dual-
encoder sequence to sequence model on test asr.enc.

tion: ASR dialog systems can be viewed as a domain adap-
tation problem of text dialog systems. However, ASR errors
include incorrectly recognized words as well as the removal
of punctuation marks. Consequently, the structures of ASR
transcriptions and original texts will be different in essence,
even though they have the same meaning. Therefore, we pro-
pose the dual-encoder sequence-to-sequence model to solve
this problem and it achieves the best result.

6.4. Dual-encoder sequence-to-sequence model

In this experiment, we train Seq2Seq-text first and then
build another encoder for ASR transcription inputs to mini-
mize the state vectors of the two encoders by Eq. (2). For
testing, test asr.enc is used as the encoder input. The ASR
gate will allow the ASR state vector to be passed into the de-
coder. The result is shown in Table 5.

According to the Table 5, we can observe that all the
training settings in this experiment achieve better perfor-
mance than the previous one. The model gets 0.25 BLEU
score by only using 20% train asr.enc and its original texts
pair for training. It can be applied to the real world scenario
lacking ASR transcription data. With more ASR data, the
performance gradually improves and reaches the best BLEU
score of 0.269 when utilizing all train asr.enc.

Our dual-encoder sequence-to-sequence model deals with
this task in two aspects. First, if the original text encoder is



Affecting factors Input Sequence-to-Sequence model Our model
Punctuation Marks How old are you? Thirty-five. Twenty-five.

How old are you Very strange. Thirty-five.
What’s your name? Palm Smith. Samantha.
What is your name You’re a good idea. Jacob.

ASR error Do you like me? Sure. Yes.
The u. like me What sub? Yes.
How many days are you gonna stay? Two. I don’t know.
How many days are you then as they Why? Twelve.

Homonyms How about going home? Okay. Okay.
How a bell going home? I like the noise. Okay.
I’m walking along the river. You’re a fool! You’re not!
I’m walking a long the river. I’m sorry, I’m sorry. What’s the matter?

Table 6. Different types of affecting factors we observed from our positive examples.

not capable of learning the meanings and structures of ASR
data, we can use two distinct encoders to train the two domain
data independently. Second, the method forces the state vec-
tor pair to be as similar as possible, which ensure the decoder
to predict the same answer. In this way, the dialog system
can give consistent responses for the text input or the speech
input.

To be more advanced, we combine the two loss functions
to optimize our model. It means that we also fine-tune the
decoder on the target domain, in addition to minimizing the
state vectors of the encoders. The result is in Table 5.

6.5. Discussion

To understand how our model recovers from the ASR er-
rors and generates suitable responses, we analyze some ex-
amples and observe that our model mitigates the impact of
the noise in three aspects. The samples are shown in Table 6.

6.5.1. Punctuation Marks

For the ASR transcriptions, there are no punctuation
marks in every sentence. However, punctuation marks
extremely influence the performance of the sequence-to-
sequence model on the original text domain. In English sen-
tences, punctuation marks are used to express our emotion.
With only few changes in punctuation marks, the response
will be totally different. Thus, the first challenge for our
dual-encoder sequence-to-sequence model is to reduce the
effect of lacking punctuation marks. For example, if the input
is “How old are you” without question marks, the sequence-
to-sequence model responses an irrelevant answer “Very
strange.”. For our proposed method, it replies “Thirty-five.”,
which is an appropriate answer.

6.5.2. ASR errors

ASR errors are caused by background noise and recogni-
tion system uncertainty. Our model learns to capture the se-
mantic meanings of dialogs so it is less susceptible to ASR er-
rors. For instance, when the input sentence “How many days
are you gonna stay?” is wrongly transferred into “How many
days are you then as they”, the sequence-to-sequence model
generates a meaningless answer “Why?”. On the contrary,
dual-encoder sequence-to-sequence model can still grasp the
meaning and then replies “Twelve”.

6.5.3. Homonyms

The difficulty in dealing with homonyms is another main
issue on ASR systems. For example, “about” may be wrongly
recognized as “a bell” so that the sequence-to-sequence model
replies “I like the noise.” because of the word “bell”. How-
ever, our model responses “Okay” for both inputs.

In our experiment, we have two important observations.
(1) We prove that the effect of ASR errors can be mitigated
by using several domain adaptation approaches. (2) Our dual-
encoder sequence-to-sequence model achieves significant im-
provements on spoken dialog systems and can tolerate several
types of noise.

7. CONCLUSION

In this paper, we propose a dual-encoder sequence-to-
sequence model with two distinct loss functions to mitigate
the effect of ASR errors on chatbots. Experimental results in-
dicate that our domain adaptation concept is capable of min-
imizing the distance between the two feature mappings in
each domain. The sample analysis also demonstrates that our
model is reasonably robust on several types of noise.



8. REFERENCES

[1] Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle
Pineau, “The ubuntu dialogue corpus: A large dataset
for research in unstructured multi-turn dialogue sys-
tems,” arXiv preprint arXiv:1506.08909, 2015.

[2] Dilek Hakkani-tr, Frdric Bchet, Gokhan Tur, and et al.,
“Beyond asr 1-best: Using word confusion networks in
spoken language understanding,” 2006.

[3] Gokhan Tur, Jerry Wright, Allen Gorin, Giuseppe Ric-
cardi, and Dilek Hakkani-tr, “Improving spoken lan-
guage understanding using word confusion networks,”
in in Proceedings of the ICSLP, 2002, pp. 1137–1140.

[4] Lang-Chi Yu, Hung-yi Lee, and Lin-Shan Lee, “Ab-
stractive headline generation for spoken content by at-
tentive recurrent neural networks with ASR error mod-
eling,” CoRR, vol. abs/1612.08375, 2016.

[5] Rohit Kumar, Sanjika Hewavitharana, Nina Zinovieva,
Matthew E Roy, and Edward Pattison-Gordon, “Error-
tolerant speech-to-speech translation,” Proceedings of
MT Summit XV, p. 229, 2015.

[6] X. He and L. Deng, “Optimization in speech-centric in-
formation processing: Criteria and techniques,” in 2012
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), March 2012, pp.
5241–5244.

[7] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu, “Bleu: A method for automatic evaluation of
machine translation,” in Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics,
Stroudsburg, PA, USA, 2002, ACL ’02, pp. 311–318,
Association for Computational Linguistics.

[8] L. s. Lee, J. Glass, H. y. Lee, and C. a. Chan, “Spoken
content retrieval x2014;beyond cascading speech recog-
nition with text retrieval,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 23, no.
9, pp. 1389–1420, Sept 2015.

[9] A. Deoras, G. Tur, R. Sarikaya, and D. Hakkani-Tr,
“Joint discriminative decoding of words and semantic
tags for spoken language understanding,” IEEE Trans-
actions on Audio, Speech, and Language Processing,
vol. 21, no. 8, pp. 1612–1621, Aug 2013.

[10] Edwin Simonnet, Sahar Ghannay, Nathalie Camelin,
Yannick Estève, and Renato De Mori, “ASR error man-
agement for improving spoken language understand-
ing,” CoRR, vol. abs/1705.09515, 2017.

[11] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor
Darrell, “Adversarial discriminative domain adapta-
tion,” CoRR, vol. abs/1702.05464, 2017.

[12] Yaroslav Ganin and Victor Lempitsky, “Unsupervised
domain adaptation by backpropagation,” in Proceed-
ings of the 32nd International Conference on Machine
Learning, Francis Bach and David Blei, Eds., Lille,
France, 07–09 Jul 2015, vol. 37 of Proceedings of Ma-
chine Learning Research, pp. 1180–1189, PMLR.

[13] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko,
and Trevor Darrell, “Deep domain confusion: Maximiz-
ing for domain invariance,” CoRR, vol. abs/1412.3474,
2014.

[14] Mingsheng Long and Jianmin Wang, “Learning trans-
ferable features with deep adaptation networks,” CoRR,
vol. abs/1502.02791, 2015.

[15] A. Gretton, AJ. Smola, J. Huang, M. Schmittfull, KM.
Borgwardt, and B. Schölkopf, Covariate shift and local
learning by distribution matching, pp. 131–160, MIT
Press, Cambridge, MA, USA, 2009.

[16] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate
Saenko, “Simultaneous deep transfer across domains
and tasks,” CoRR, vol. abs/1510.02192, 2015.

[17] Cristian Danescu-Niculescu-Mizil and Lillian Lee,
“Chameleons in imagined conversations: A new ap-
proach to understanding coordination of linguistic style
in dialogs.,” in Proceedings of the Workshop on Cog-
nitive Modeling and Computational Linguistics, ACL
2011, 2011.

[18] Diederik P. Kingma and Jimmy Ba, “Adam: A method
for stochastic optimization.,” CoRR, vol. abs/1412.6980,
2014.

[19] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam
Shazeer, “Scheduled sampling for sequence predic-
tion with recurrent neural networks,” CoRR, vol.
abs/1506.03099, 2015.


