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ABSTRACT

3D reconstruction, inferring 3D shape information from a
single 2D image, has drawn attention from learning and vi-
sion communities. In this paper, we propose a framework for
learning pose-aware 3D shape reconstruction. Our proposed
model learns deep representation for recovering the 3D ob-
ject, with the ability to extract camera pose information but
without any direct supervision of ground truth camera pose.
This is realized by exploitation of 2D-3D self-consistency
between 2D masks and 3D voxels. Experiments qualita-
tively and quantitatively demonstrate the effectiveness and
robustness of our model, which performs favorably against
state-of-the-art methods.

Index Terms— deep learning, 3D shape reconstruction,
camera pose estimation, perspective projection

1. INTRODUCTION

3D modeling and reconstruction can be applied to a variety
of real-world applications, including visual rendering, model-
ing, and robotics. Over the past few years, convolution neural
networks (CNN) have shown impressive progress in the ar-
eas of computer vision and image processing. For the task of
3D reconstruction, with the development of large-scale shape
repository like ShapeNet [1], several deep learning methods
have been proposed [2, 3, 4, 5, 6,7, 8,9, 10, 11]. Many pre-
vious works predict pose-invariant 3D shapes in the volumet-
ric form, voxels, aligned with a pre-defined canonical frame.
That is, the predicted shapes would be similar for multiple
images of the same instance but taken from different camera
viewpoints. This can facilitate the efficiency of CNN.
Different settings such as the number of 2D input im-
ages and the viewpoint information of images are observed.
3D-R2N2 [3] uses a 3D-Convolutional Recurrent Neural Net-
work to reconstruct a 3D volumetric model from multiple im-
ages of the same object. Other works [4, 5, 6, 7, 9] man-
age to learn shape reconstruction in weakly supervised set-
tings. Guided by the projected 2D masks and given camera
viewpoints, PTN [4] learns to reconstruct 3D voxels using 2D

* Indicates equal contribution.

sihlouettes without supervision of ground truth (GT) shapes.
MVC [9] utilizes the consistency between shape and view-
point information independently predicted from multiple im-
ages of the same instance taken from different camera view-
points. Although these weakly-supervised works can achieve
satisfactory visual results, they either require GT viewpoint
or achieve lower Intersection over Union (IoU) results.

As for representation disentanglement, many methods
have been proposed [12, 13, 14, 15, 16]. For instance, Deep
Disentangled Representations for Volumetric Reconstruc-
tion [15] takes 2D images as inputs and produces separate
representations for 3D shapes and parameters of viewpoint
and lighting. However, their learned representation of view-
points cannot convert into exact azimuth or elevation angles.

In order to enable reconstructed shapes to interact with
other shapes, for example placing them in 3D scenes with rel-
ative poses, the predicted shapes should contain pose infor-
mation. Therefore, we propose a learning paradigm that en-
ables pose-aware 3D shape reconstruction using ground truth
voxels and masks but without ground truth pose. The pro-
posed network predicts pose-invariant voxels and estimates
corresponding camera pose. The predicted voxels are then
transformed with estimated poses into pose-aware 3D shapes.
Experiments show that the proposed method is able to achieve
state-of-the-art 3D reconstruction performance and can pro-
duce satisfactory pose-aware 3D shape reconstruction.

2. PROPOSED METHOD
2.1. Notations and Architecture
The network architecture is composed of five components as
shown in Fig. 1. We explain the functionality of each compo-
nent and why the method achieves 3D shape reconstruction
with the ability to extract camera pose information and en-
ables pose-aware shape reconstruction.

(a) Image Encoder E: The encoder consists of residual
structures [17]. It maps an input RGB image x of size 64 x
64 x 3 to intrinsic shape representation, shape code z,, and
extrinsic viewpoint representation, pose code z,. The former
is a 512-dimensional vector, and the latter is a 16-dimensional
vector. The pose code z, is then converted into camera pose
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Fig. 1: The proposed method for learning pose-aware 3D reconstruction. The network learns pose estimation through 2D-3D self-consistency
loss between masks and voxels. The predicted voxel is transformed with the estimated camera pose to produce the pose-aware voxel.

p through one FC layer. As translation does not affect the
quality of shape reconstruction, we consider only elevation
and azimuth for camera pose. In addition, we also assume
camera intrinsic parameters are given as MVC [9].

(b) Voxel Decoder D,: We use similar 2D deconvolution
layers for voxel decoder D,, as [10]. It takes only shape code
zs as input and outputs voxels y of size 32 x 32 x 32. We
utilize GT voxels ¢ to learn to predict pose-invariant shapes
aligned with a certain frame, where, for instance, the Z axis
represents the upward direction. This alignment can make the
shape reconstruction using CNN more tractable and efficient.

(¢) Mask Decoder D,,: We utilize U-Net [18] decoder
structure for 2D mask segmentation. Both shape code z; and
pose code z, are input latent vectors. The decoder outputs
masks m of size 48 x 48 and has GT mask m supervision.

(d) 2D-3D Self-consistency Loss: The loss evaluates the
inconsistency between GT 3D voxels y viewed from a pre-
dicted camera pose p and GT mask m. That is, if the cam-
era pose is incorrect, the projection of shapes would not be
aligned properly with the associated GT 2D masks. This is
how pose estimation can be learned without GT pose.

(e) Transform: The predicted voxels are transformed us-
ing estimated camera poses to produce pose-aware 3D voxels.

We detail (d) and (e) in the following subsection.

2.2. Consistency for Pose-aware Shape Reconstruction

We mention the ray consistency used in [9] and [19] with
some modifications and describe the transformation of vox-
els using predicted pose into pose-aware voxels here.

Given camera intrinsic parameters (fy, fo, tg, Vo), Where
(fu, fv) is focal length of camera and (ug, vg) is optical cen-
ter of camera, the ray passing through the GT mask pixel (u,
v) travels along the direction (X742 f”U L f”" 1). We consider
discrete points along this ray path and sample points at a fixed
set of depth values { d; = &, 1 < i < N }. The i-th point
in the ray pathis at [; = (“ 2 d;, va d;, d;). Given camera
rotation matrix R and camera translation ¢, the point would
be mapped to the location Rx(l; 4+ t). The camera rotation
matrix I is parameterized by camera pose p defined in this
paper, and the translation ¢ is a fixed constant in this work.
With GT voxel g, trilinear sampling 7'ri is then used to de-

termine the occupancy y? of the i-th point on the ray passing
through the pixel (u, v) as showed below.

= Tri(§, R x (I; + 1)) (1)
Therefore, the probablhty q(u 7J)(z') that the ray passing
through the pixel (u, v) stops at the i-th point would be
determined.
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The probability q(u v),pen that the ray penetrates the voxel is
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The loss of this ray is deﬁned]as below and is a function of
GT voxel g, GT mask m, and predicted camera pose p.
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Please note that m(u, v) represents the (u,ﬁ% pixel of m and
is set to 1 if it is an object pixel and 0 otherwise. When m(u,
v)= 1, the ray should stop and therefore qfu’v)’pen would be
low. The ray consistency loss Ly.qy (7, p, 1) is defined as the
mean of L, .)(§,p, M) over all pixels of . As Egs. (1)-(4)
are differentiable w.r.t. camera pose p, this loss can supervise
pose estimation.
Besides, (1 — q{’uw)_pen) represents the (u, v) pixel of 3D-
2D projection P(g, p). That is, if the ray terminates in voxels,
qfu,v)men would be low, and (1 — (u W, ven) Would be near
1 and represents an object pixel. In addition to ray consis-
tency loss, we also adopt the Intersection-over-Union (IoU)
loss [10] between 3D-2D projection P(y, p) and GT mask m

defined as below.
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We refer the combination of this loss and ray consistency loss
to as 2D-3D self-consistency loss.

m) = exp(l— )—1 (5)
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In the proposed method, we use N = 64 instead of 80 as
in [9]. As some fine structures like the bases of chairs would
diminish when the GT mask is of size 32 x 32 as used in [9],
we use GT masks of size 48 x 48.

The transformation of predicted shapes with estimated
pose into pose-aware shapes is similar to ray consistency.
Given a predicted voxel y and camera pose p, which parametrizes
camera rotation matrx R, the occupancy y;’ at any location of
pose-aware voxel grid ;" is determined as below.

yi' = Tri(y, R x (I)) @)
Please note that there is no translation in transformation.

2.3. Loss Functions
We describe the loss functions used to train the network here.
The fine structures such as the base of a chair or the wing
of an airplane occupy a relatively small portion of the whole
shape, and thus the model tends to predict nothing for these
fine structures to minimize the penalty of traditional cross en-
tropy loss. To solve this issue, we adopt different penalties
for false positive and true negative of each voxel and utilize
weighted cross entropy 108s L3grecon defined as below where
Ap is the positive weight.

LBdrecon = _)\p . Q ' log(y) - (1 - Q) : lOg(l - y) (8)

We also consider IoU loss for 3D reconstruction.
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Liou(y,9) = exp(l — -1
where y; and g; are the i-th voxel of predicted shapes and GT
shapes. Please note that y is the output of sigmoid function.
To regularize the distribution of shape code z, and better
model ambiguity of 3D reconstruction due to unseen parts of
shapes, we adopt conditional variational autoencoder [12, 20]
for F and D,, with the Kullback-Leibler (KL) divergence loss.

LKL = ’CL(N(ZS,ua Zs,var)”N(Oa 1)) (10)

where the original shape code z; would consist of mean 2z,
and variance 2y ,q,, €ach is a 512-dimension vector. Only the
mean Zz, ,,, would be utilized by mask decoder D,;,, as mask
segmentation is under-determined.

The 2D mask segmentation loss is calculated as:

L = BOE(Dy(B(x)), ) (1

where BC'E indicates binary cross entropy loss.

As for camera pose p supervision, we use 2D-3D self-
consistency loss L, as described previously. Please note that
both L,y and L,,,; are differentiable w.r.t. camera pose p
and thus can supervise pose estimation.

The loss functions for image encoder E, voxel decoder
D,, and mask decoder D,,, are shown as below:

Lm + (LSdrecon + LIOU)

Lg=( 5

)+ Lec + ALk (12)

Method airplane car chair
3D-R2N2 [3] 0.513 | 0.798 | 0.466
DRC [19] 0.570 | 0.760 | 0.470
PTN [4] 0.584 | 0.738 | 0.507

Voxel Tube [10] 0.671 0.821 | 0.550
MVC@3D) [9] 0.570 0.790 | 0.490
Ours 0.688 0.807 | 0.572

Table 1: Comparison with other methods in terms of IoU. MVC
(3D) indicates MVC trained with GT 3D voxels. MVC without 3D
supervision produces lower IoU.

airplane car chair
Rotation error 6.47° 89.74° 5.19°
Elevation error 2.79° 421° 1.73°
Mask IoU 0.930 0.987 0.970

Table 2: Quantitative result of pose estimation and mask segmenta-
tion. Mean values for each category are shown.

LD,U = L3d7‘econ + LIOU (13)
LDm = Lm (14)
We set A, = 3, A\pgy = 10, A\proj = 0.25, and Mg, = 0.02.

3. EXPERIMENTS

We evaluate the performance of our proposed method on
pose-invariant voxel reconstruction, pose estimation, and
pose-aware voxel reconstruction.

Dataset: The ShapeNet dataset [1] contains a rich collec-
tion of 3D CAD models. The three categories, airplane, car,
and chair, are selected for our experiment. We use the data
split from [4]. For each CAD model, we generate 24 ren-
dered images and corresponding GT masks using the same
camera pose information as in [4]. We use the same GT vox-
els in [9] to fit the projection module, and the grid size of
voxels is 32 x 32 x 32. We use Adam optimizer [21] with a
learning rate of 2 x 10~ for image encoder and decoders.

3.1. Pose-Invariant 3D Shape Reconstruction

To evaluate the performance, we consider the IoU between
predicted 3D voxels and corresponding GT 3D voxels. We
compare our approach with several state-of-the-art learning-
based methods: 3D-R2N2 [3], Differentiable Ray Consis-
tency (DRC) [19], Perspective Transformer Nets (PTN) [4],
voxel tube [10] and Multi-view Consistency (MVC) [9]. All
the works except [9] and [19] scale GT voxels to fit inside the
whole 32 x 32 x 32 grids. In order to utilize the projection
module, [9], [19] and our work do not scale voxels, and the
GT voxels are slightly smaller. This difference results in a
little drop in IoU as each voxel occupies a larger portion of
reconstructed shapes and thus one incorrect voxel would re-
duce IoU more. Even with this constraint, the performance of
our method is still better than or equal to other methods. This
shows that the separation of shape and pose representation
can help 3D reconstruction.
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Fig. 2: Predictions on testing data with a single RGB input image. (a) Input image x. (b) GT mask . (c) Predicted mask m. (d) Projection
of predicted shapes using estimated camera pose P(y, p). (¢) GT voxel g. (f) Predicted voxel y. (g) GT pose-aware voxel. (h) Mesh from GT
pose-aware voxel. The mesh is obtained by applying marching cubes to the pose-aware voxel and is shown here for better visual effects. (i)
Predicted pose-aware voxel using predicted shape and pose. (j) Mesh from predicted pose-aware voxel.

airplane  car chair
pred shape & pred pose ~ 0.569  0.691 0.525
pred shape & GT pose 0.640  0.792 0.550
GT shape & pred pose 0.728  0.723  0.806

Table 3: Mean IoU result of pose-aware 3D shape reconstruction on
testing data. pred means that shapes or poses are predicted.

airplane  car chair
pred shape & pred pose ~ 0.709  0.864 0.774
pred shape & GT pose 0.715  0.864 0.773
GT shape & pred pose 0.683  0.827 0.777
GT shape & GT pose 0.684  0.817 0.777

Table 4: Mean IoU result of 3D-2D projection on testing data. We
evaluate IoU between GT masks and different projections.

3.2. Pose Estimation and Pose-Aware 3D Reconstruction

The result of pose estimation and mask segmentation is shown
in Table 2. The rotation error of car is close to 90° because
50.10% of pose predictions are rotated with 180° due to the
symmetry of shapes viewed from some angles. Other pose
errors are small as we do not utilize direct pose supervision.
We transform voxels of grid size 32 x 32 x 32 into pose-
aware voxels of size 48 x 48 x 48. The performance of
pose-aware 3D shape reconstruction from different voxels
and poses evaluated by IoU is shown in Table 3. GT pose-

aware voxels are obtained by transforming GT voxels with
GT poses. This demonstrates the effectiveness of the pro-
posed method to learn pose-aware shape reconstruction as we
rely on only addition GT masks to learn pose information.

The performance of 3D-2D projections is shown in Ta-
ble 4. We evaluate mean IoU between GT masks and pro-
jections. The result shows that the projections from predicted
shapes with predicted poses can explain GT masks as well as
projections of GT voxels with GT poses.

Visualization of predictions is shown in Fig. 2. We can see
that our pose-aware 3D shape reconstruction contains fairly
accurate camera pose information.

4. CONCLUSION

We propose a framework for pose-aware single-image 3D
reconstruction. Our proposed model is able to learn deep
representation from a single 2D input for recovering its 3D
voxels, with the ability to extract camera pose information.
More importantly, ground truth camera pose information is
never observed during training of our proposed model. This
is achieved by exploiting 2D-3D self-consistency between
2D masks and 3D voxels. Both quantitative and qualitative
results demonstrate that our method is able to produce satis-
factory results when compared to state-of-the-art approaches.
Thus, the effectiveness and robustness of our model can be
successively verified.
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